Inactivating influenza viruses on surfaces using hydrogen peroxide or triethylene glycol at low vapor concentrations.

نویسندگان

  • Stephen N Rudnick
  • James J McDevitt
  • Melvin W First
  • John D Spengler
چکیده

BACKGROUND Surfaces in congregate settings, such as vehicles used for mass transportation, can become contaminated with infectious microorganisms and facilitate disease transmission. We disinfected surfaces contaminated with H1N1 influenza viruses using hydrogen peroxide (HP) vapor at concentrations below 100 ppm and triethylene glycol (TEG)-saturated air containing 2 ppm of TEG at 25 degrees C. METHODS Influenza viruses in aqueous suspensions were deposited on stainless-steel coupons, allowed to dry at ambient conditions, and then exposed for up to 15 minutes to 10 to 90 ppm of HP vapor or TEG-saturated air. Virus assays were done on the solution used to wash the viruses from these coupons and from coupons treated similarly but without exposure to HP or TEG vapor. RESULTS After 2.5 minutes, exposure to 10-ppm HP vapor resulted in 99% inactivation. For air saturated with TEG at 25 to 29 degrees C, the disinfection rate was about 1.3 log(10) reductions per hour, about 16 times faster than the measured natural inactivation rate under ambient conditions. CONCLUSIONS Vapor concentrations of 10 ppm HP or 2 ppm TEG can provide effective surface disinfection. At these low concentrations, the potential for damage to even the avionics of an airplane would be expected to be minimal. At a TEG vapor concentration of 2 ppm, there are essentially no health risks to people.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disinfection of Clouds of Meningopneumonitis and Psittacosis Viruses with Triethylene Glycol Vapor

1. Triethylene glycol in excess of saturation, introduced as a vapor into a cloud chamber in which a dynamic cloud of either meningopneumonitis virus or psittacosis virus was developed simultaneously with, or in most instances subsequently to, the glycol cloud, induced distinct reduction in concentration of air-home virus, as measured both by cloud sampling in capillary impingers and by exposur...

متن کامل

Oxidation of tertiary amine-derivatized surfaces to control protein adhesion.

Selective oxidation of ω-tertiary amine self-assembled thiol monolayers to tertiary amine N-oxides is shown to transform the adhesion of model proteins lysozyme and fibrinogen upon them. Efficient preparation of both secondary and tertiary linker amides as judged by X-ray photoelectron spectroscopy (XPS) and water droplet contact angle was achieved with an improved amide bond formation on gold ...

متن کامل

Training Manual for Prevention of Covid-19 Disease among Hospital Personnel

Dear Editor In recent days, coronavirus disease (COVID-19) as a viral infection caused by the SARS-Cov-2 virus has become a pandemic disease and has created critical conditions worldwide [1]. According to previous studies on pathogenic viruses associated with acute respiratory distress syndrome, each virus has a specific virulence dose, which it is about 2×103-3×103 viral particles for the inf...

متن کامل

Inhibition of odontogenic differentiation of human dental pulp cells by dental resin monomers

BACKGROUND Dental resin monomers that are leached from the resin matrix due to incomplete polymerization can affect the viability and various functions of oral tissues and cells. In this study, the effects of triethylene glycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) on odontogenic differentiation of human dental pulp cells (HDPCs) were examined. To mimic clinical situati...

متن کامل

A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration.

Isolated internodes of Chara corallina have been used to study the gating of aquaporins (water channels) in the presence of high concentrations of osmotic solutes of different size (molecular weight). Osmolytes were acetone and three glycol ethers: ethylene glycol monomethyl ether (EGMME), diethylene glycol monomethyl ether (DEGMME), and triethylene glycol monoethyl ether (TEGMEE). The 'osmotic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of infection control

دوره 37 10  شماره 

صفحات  -

تاریخ انتشار 2009